Quantum Mechanics inspired decoding algorithm for error-correcting codes

Jun-ichi Inoue
Hokkaido University, Sapporo, JAPAN

In collaboration with
Yohei Saika, Masato Okada
Wakayama NCT, The Univ. of Tokyo

META08 Conference 31 October 2008 Hammamet
Aim of the study

For error-correcting codes described by spin glass models (a kind of magnetic alloy), we construct an iterative algorithm to achieve the Bayes-optimal decoding by making use of quantum-mechanical fluctuation.

We evaluate the statistical performance of the algorithm.

Conceptual picture ⇒

We show the usefulness of the quantum-mechanical fluctuation to solve the problem of information.
Outline

• Error-correcting codes (Sourlas codes)
• Bayesian inference and energy function
• Quantum-mechanical fluctuation
• Phase diagram of the performance
• Iterative decoding algorithm
• Summary
Error-correcting codes

Original bit sequence

1010010100101010101

Received bit sequence

1000000100101011101

We send

\[N \sum_{p} \text{parity bits} \]

The Shannon’s theorem tells us

\[R < C \] (Channel capacity)

\[p_e \sim e^{-N(C-R)} \]

Rate

\[R = \frac{N}{N^C_p} \]

Parity bits

Error-correcting codes

Error

Noisy channel

\[1 + 0 + 1 + 0 + 0 = 0 \pmod{2} \]

\[0 + 1 + 0 + 1 + 0 = 0 \pmod{2} \]

\[0 + 1 + 0 + 0 + 1 = 0 \pmod{2} \]

\[1 + 0 + 1 + 0 + 1 = 1 \pmod{2} \]
Error-correcting codes by ‘spins’

Original message (Ising spins)
\[\{ \xi_1, \xi_2, \ldots, \xi_N \}, \quad \xi \in \{-1, 1\} \]

Parity
\[\xi_{i1} \xi_{i2} \cdots \xi_{ip} = J_{i1i2 \cdots ip}^0 \]

(# of parity is \(N \binom{p}{C_p} \))

Rate and capacity (\(N, p \to \infty \))
\[R = \frac{N}{N_B} = \frac{N}{N \binom{p}{C_p}} \approx \frac{p!}{N^{p-1}} \]
\[C \approx \frac{J_0^2 p!}{J^2 N^{p-1} \log 2} \]

\[\frac{R}{C} = \left(\frac{J}{J_0} \right)^2 \log 2 \leq 1 \]

S/N ratio
error \sim e^{-N(C-R)}

Noise (AWGN)
\[J_{i1i2 \cdots ip} = \left(\frac{J_0 p!}{N^{p-1}} \right) J_{i1i2 \cdots ip}^0 + J \sqrt{\frac{p!}{2 N^{p-1}}} \xi_{i1i2 \cdots ip}^0 \]
\[\xi_{i1i2 \cdots ip} = N(0,1), \quad \left\langle \xi_{i1i2 \cdots ip} \, \xi_{j1j2 \cdots jp} \right\rangle = \delta_{i1i2 \cdots ip, j1j2 \cdots jp} \]
Sourlas codes (1989)

Posterior

\[P(\{\sigma\} | \{J\}) \propto P(\{J\} | \{\sigma\}) P(\{\sigma\}) \]

Here we assume uniform prior

\[
\frac{\exp\left(-\frac{N^{p-1}}{a^2 p!} \sum_{i1i2..ip} \xi_{i1i2..ip}^2 \right)}{\left(a^2 \pi p! / N^{p-1} \right)^{\frac{1}{2}}} = \frac{\exp\left(-\frac{N^{p-1}}{a^2 p!} \sum_{i1..ip} (J_{i1..ip} - \frac{a_0 p!}{N^{p-1}} \sigma_{i1} \cdots \sigma_{ip})^2 \right)}{\left(a^2 \pi p! / N^{p-1} \right)^{\frac{1}{2}}}
\]

MAP estimation is identical to finding the lowest energy state of

\[H = \frac{N^{p-1}}{a^2 p!} \sum_{i1..ip} (J_{i1..ip} - \frac{a_0 p!}{N^{p-1}} \sigma_{i1} \cdots \sigma_{ip})^2 \]

\[J_{i1..ip} \]: Output of AWGN (noisy parity)

Minimization of the energy is achieved via simulated annealing etc
Bayes-optimal decoding

Posterior marginal:

\[
P(\sigma_i \mid \{J\}) = \sum_{\{\sigma\} \neq \sigma_i} P(\{\sigma\} \mid \{J\})
\]

\[
\bar{\xi}_i = \text{sgn} \left[P(\sigma_i = 1 \mid \{J\}) - P(\sigma_i = -1 \mid \{J\}) \right]
\]

We might rewrite it as

\[
\bar{\xi}_i = \text{sgn} \left[\sum_{\sigma_i} \sigma_i P(\sigma_i \mid \{J\}) \right] = \text{sgn} \left(\frac{\sum_{\{\sigma\}} \sigma_i e^{-H/T}}{\sum_{\{\sigma\}} e^{-H/T}} \right) = \text{sgn} \left(\langle \sigma_i \rangle_{T=1} \right)
\]

Bit-error rate

\[
p_B = \frac{1}{2} \left(1 - \frac{1}{N} \sum_i \bar{\xi}_i \xi_i \right)
\]

is minimized on the Nishimori line

\[
\frac{a_0}{a^2} = \frac{J_0}{J^2}, \quad T = 1
\]

(cf. T=0 is a MAP result)

Rujan (1993)
Nisimori (1993)
Nishimori and Wong (1998)
The Quantum version

\[
\hat{H} = \frac{Np^{-1}}{a^2 p!} \sum_{i1, i2, \ldots, ip} (J_{i1i2\ldots ip} - \frac{a_0 p!}{Np^{-1}} \hat{\sigma}_{i1} \cdots \hat{\sigma}_{ip})^2 - \Gamma \sum_i \hat{\sigma}_{ix}^2
\]

\[
\hat{\sigma}_{ix} = I_{(i)} \otimes \cdots \otimes \sigma_{ix} \otimes \cdots \otimes I_{(N)}
\]

\[
\hat{\sigma}_{iz} = I_{(i)} \otimes \cdots \otimes \sigma_{iz} \otimes \cdots \otimes I_{(N)}
\]

Density matrix

\[
\hat{\rho} = \frac{1}{Z} \exp\left[-\frac{\hat{H}}{T} \right], \quad Z = \text{tr} \exp\left[-\frac{\hat{H}}{T} \right]
\]

Bayes-optimal decoding is achieved even at the ground state \(T=0 \)

\[
\bar{\xi}_i = \text{sgn} \left[\text{tr} \left(\hat{\sigma}_{iz} \hat{\rho} \right) \right]
\]

\[
\frac{a_0}{a^2} = \frac{J_0}{J^2}, \quad T \to 0, \quad \Gamma = \Gamma_{\text{opt}}
\]
Theoretical analysis (1/2)

In the large system limit $N \to \infty$

Phase diagram is independent of the amplitude of transverse field

$\xi_{i_1} \xi_{i_2} \cdots \xi_{i_p} = J_{i_1i_2\cdots i_p}^0$

$\frac{R}{C} = \left(\frac{J}{J_0}\right)^2 \log 2 \leq 1$

Infinite p

$\sqrt{\log 2} \approx 0.833$
Theoretical analysis (2/2)

Behavior of order parameters for finite p in the large system limit

$p = 2: J_{ij} = \xi_i \xi_j$

$p = 3: J_{ijk} = \xi_i \xi_j \xi_k$

Parity bit

There exists the amplitude that gives the Bayes-optimal decoding

$\frac{a_0}{a^2} = \frac{J_0}{J^2} = 1$
Iterative decoding algorithm

For $p = 2$ we recursively solve

$$\hat{m}_i \equiv tr\left(\hat{\sigma}_i \hat{\rho}_{\text{mean-field}}\right)$$

$$m_i^{(t+1)} = \frac{\sum_j J_{ij}m_j^{(t)} - R_i^{(t)}}{\sqrt{\Gamma(t)^2 + \left(\sum_j J_{ij}m_j^{(t)} - R_i^{(t)}\right)^2}}$$

Reaction term

$$R_i^{(t)} = \sum_i J_{ij}^2 \left[2\left(1-\{m_i^{(t)}\}^2\right)\left(1-\{m_j^{(t)}\}^2\right)^{3/2} + 3\left(1-\{m_i^{(t)}\}^2\right)^{1/2}\left(1-\{m_j^{(t)}\}^2\right)^{3/2}\right]$$

with mean-field annealing

$$\Gamma(t) = \Gamma_0 \left(1 + \frac{c}{(t+1)}\right)$$

Bayes-estimate at each time step for each bit

$$\overline{\xi}_i^{(t)} = \text{sgn}(m_i^{(t)})$$

Estimate

$$\overline{\xi}_i = \text{sgn}\left[tr\left(\hat{\sigma}_i \hat{\rho}\right)\right]$$

TAP-like mean-field approximation

Is hard to compute
Dynamics of decoding

Practical decoding for finite system size

\(p = 2 \)
\(\Gamma_0 = 0.5 \)

N=1000, 10-samples

\(J_d/J = 0.8 \)
\(J_d/J = 1 \)
\(J_d/J = 2 \)
BER as a function of S/N ratio

Practical decoding for finite system size

\[p = 2 \]
\[\Gamma_0 = 0.5 \]

Phase transition
Summary

• We formulated quantum-mechanical decoding algorithm to retrieve the original message iteratively
• The BER drops suddenly at the critical signal-to-noise ratio
• *The Shannon’s bound* and *phase transition* are closely (exactly) related